[yasr_overall_rating]

ME3291: The governing equation for the temperature distribution with time: Numerical Methods for Engineers Assignment, NUS, Singapore

The governing equation for the temperature distribution with time on a 2D square plate measuring 1 unit by1 unit is

∂T/∂t = ∂2T/∂x2 + ∂2T/∂y2 ,

subjected to the Dirichlet boundary conditions for T  provided in Fig.1.  You are to obtain the following:

(a) The temperature contour plot on the square plate with time, say at t=0.01, 0.1 and at steady state. (You can provide contours at other times too to depict the convergence of the results at steady state.) Take the initial condition at t=0 as T=0.0 for the whole domain.

(b) Separately, program and compute for the Laplace Equation                                  ∂2T/∂x2 + ∂2T/∂y2  = 0

and obtain the solution for comparison to the steady state solution in (a).

For the above, you have to show clearly how you treat the Dirichlet boundary conditions, provide a listing of your program, and other pertinent workings. The various contour plots can be carried out using the Techp1ot or any other suitable software. (On matrix inversion, you have the choice to use the direct method like Gauss Elimination or indirect iterative methods.)

Write My Assignment
Hire a Professional Essay & Assignment Writer for completing your Academic Assessments

Native Singapore Writers Team

100% Plagiarism-Free Essay
Highest Satisfaction Rate
Free Revision
On-Time Delivery

The post ME3291: The governing equation for the temperature distribution with time: Numerical Methods for Engineers Assignment, NUS, Singapore appeared first on Singapore Assignment Help.

GET YOUR PAPER DONE